A Sliding-Window Method to Discover Recent Frequent Query Patterns from XML Query Streams

Author:

Chang Tsui-Ping1

Affiliation:

1. Department of Information Technology, Ling Tung University, Taichung 408, Taiwan

Abstract

Providing efficient mining algorithm to discover recent frequent XML user query patterns is crucial, as many applications use XML to represent data in their disciplines over the Internet. These recent frequent XML user query patterns can be used to design an index mechanism or cached and thus enhance XML query performance. Several XML query pattern stream mining algorithms have been proposed to record user queries in the system and thus discover the recent frequent XML query patterns over a stream. By using these recent frequent XML query patterns, the query performance of XML data stream is improved. In this paper, user queries are modeled as a stream of XML queries and the recent frequent XML query patterns are thus mined over the stream. Data-stream mining differs from traditional data mining since its input of mining is data streams, while the latter focuses on mining static databases. To facilitate the one-pass mining process, novel schemes (i.e. XstreamCode and XstreamList) are devised in the mining algorithm (i.e. X2StreamMiner) in this paper. X2StreamMiner not only reduces the memory space, but also improves the mining performance. The simulation results also show that X2StreamMiner algorithm is both efficient and scalable. There are two major contributions in this paper. First, the novel schemes are proposed to encode and store the information of user queries in an XML query stream. Second, based on the two schemes, an efficient XML query stream mining algorithm, X2StreamMiner, is proposed to discover the recent frequent XML query patterns.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ontology-Based Data Modeling for NoSQL Databases: A Case Study in e-Healthcare Application;SN Computer Science;2022-10-15

2. Efficient methods to set decay factor of time decay model over data streams;Journal of Intelligent & Fuzzy Systems;2019-06-11

3. An Adaptive Sliding Window Algorithm for Mining Frequent Itemsets in Computer Forensics;2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE);2018-08

4. A Parallel Encoding Method of XML User Query Patterns;2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI);2016-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3