Multistep Flow Prediction on Car-Sharing Systems: A Multi-Graph Convolutional Neural Network with Attention Mechanism

Author:

Zhu Hongming1,Luo Yi1,Liu Qin1,Fan Hongfei1,Song Tianyou1,Yu Chang Wu2,Du Bowen3

Affiliation:

1. School of Software Engineering, Tongji University, Shanghai, P. R. China

2. Department of Computer Science and Information Engineering, Chung Hua University, Taipei, Taiwan

3. Department of Computer Science, University of Warwick, Coventry, UK

Abstract

Multistep flow prediction is an essential task for the car-sharing systems. An accurate flow prediction model can help system operators to pre-allocate the cars to meet the demand of users. However, this task is challenging due to the complex spatial and temporal relations among stations. Existing works only considered temporal relations (e.g. using LSTM) or spatial relations (e.g. using CNN) independently. In this paper, we propose an attention to multi-graph convolutional sequence-to-sequence model (AMGC-Seq2Seq), which is a novel deep learning model for multistep flow prediction. The proposed model uses the encoder–decoder architecture, wherein the encoder part, spatial and temporal relations are encoded simultaneously. Then the encoded information is passed to the decoder to generate multistep outputs. In this work, specific multiple graphs are constructed to reflect spatial relations from different aspects, and we model them by using the proposed multi-graph convolution. Attention mechanism is also used to capture the important relations from previous information. Experiments on a large-scale real-world car-sharing dataset demonstrate the effectiveness of our approach over state-of-the-art methods.

Funder

National Key R&D Program of China

Shanghai Committee of Science and Technology

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3