A Method for Measuring the Constraint Complexity of Components in Automotive Embedded Software Systems

Author:

Garg Mohit1,Lai Richard1

Affiliation:

1. Department of Computer Science and Information Technology, La Trobe University, Victoria 3086, Australia

Abstract

The rapid growth of software-based functionalities has made automotive Electronic Control Units (ECUs) significantly complex. Factors affecting the software complexity of components embedded in an ECU depend not only on their interface and interaction properties, but also on the structural constraints characterized by a component’s functional semantics and timing constraints described by AUTomotive Open System ARchitecture (AUTOSAR) languages. Traditional constraint complexity measures are not adequate for the components in embedded software systems as they do not yet sufficiently provide a measure of the complexity due to timing constraints which are important for quantifying the dynamic behavior of components at run-time. This paper presents a method for measuring the constraint complexity of components in automotive embedded software systems at the specification level. It first enables system designers to define non-deterministic constraints on the event chains associated with components using the AUTOSAR-based Modeling and Analysis of Real-Time and Embedded systems (MARTE)-UML and Timing Augmented Description Language (TADL). Then, system analysts use Unified Modeling Language (UML)-compliant Object Constraint Language (OCL) and its Real-time extension (RT-OCL) to specify the structural and timing constraints on events and event chains and estimate the constraint complexity of components using a measure we have developed. A preliminary version of the method was presented in M. Garg and R. Lai, Measuring the constraint complexity of automotive embedded software systems, in Proc. Int. Conf. Data and Software Engineering, 2014, pp. 1–6. To demonstrate the usefulness of our method, we have applied it to an automotive Anti-lock Brake System (ABS).

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Statistical Model Checking for Stochastic and Hybrid Autonomous Driving Based on Spatio-Clock Constraints;International Journal of Software Engineering and Knowledge Engineering;2022-04

2. Application Computer Detection and Control System in Automobile Electronic Control System;Journal of Physics: Conference Series;2021-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3