EVALUATION OF AN AUTOMATED MULTI-PHASE APPROACH FOR PATTERNS DISCOVERY

Author:

BOUASSIDA NADIA1,BEN-ABDALLAH HANENE2,ISSAOUI IMENE3

Affiliation:

1. Mir@cl Laboratory, Institut Supérieur d'Informatique et de Multimédia, University of Sfax, Sfax, Tunisia

2. King Abdulaziz University, P. O. Box 80200, Jeddah 21589, Kingdom of Saudi Arabia

3. Mir@cl Laboratory, Faculté des Sciences Economiques et de Gestion, University of Sfax, Sfax, Tunisia

Abstract

Design patterns capitalize the knowledge of expert designers and offer reuse that provides for higher design quality and overall faster development. To attain these advantages, a designer must, however, overcome the difficulties in understanding design patterns and determining those appropriate for his/her particular application. On the other hand, one way to benefit from design patterns is to assist inexperienced designers in pattern detection during the design elaboration. Such detection should tolerate variations between the design and the pattern since the exact instantiation of a pattern is infrequent in a design. However, not all variations of a pattern are tolerated. In particular, some structural variations may result in non-optimal instantiations where the requirements are respected but the structure is different; such variations are called spoiled patterns and should also be detected and transformed into acceptable pattern instantiations. This paper first presents an improvement of our design/spoiled pattern detection approach, named MAPeD (Multi-phase Approach for Pattern Discovery). The latter uses an XML information retrieval technique to identify design/spoiled pattern occurrences in a design using, first, static and semantic information and, secondly, dynamic information. This multi-phase detection approach tolerates structural differences between the examined design and the identified design pattern. Furthermore, thanks to the matching information it collects, our identification technique can offer assistance for the improvement of a design. In its second contribution, this paper evaluates MAPeD by comparing its recall and precision rates for five open source systems: JHotDraw, JUnit, JRefactory, MapperXML, QuickUML. The latter were used by other approaches in experimental evaluations. Our evaluation shows that our design pattern identification approach has an average improvement of 9.98% in terms of precision over the best known approach.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new method for constructing and reusing domain specific design patterns: Application to RT domain;Journal of King Saud University - Computer and Information Sciences;2017-07

2. The state of the art on design patterns: A systematic mapping of the literature;Journal of Systems and Software;2017-03

3. Managing the Impact of UML Design Changes on Their Consistency and Quality;Arabian Journal for Science and Engineering;2016-02-04

4. Using metric-based filtering to improve design pattern detection approaches;Innovations in Systems and Software Engineering;2014-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3