AN INVESTIGATION ON THE USE OF MACHINE LEARNED MODELS FOR ESTIMATING SOFTWARE CORRECTABILITY

Author:

DE ALMEIDA MAURICIO A.1,LOUNIS HAKIM2,MELO WALCELIO L.3

Affiliation:

1. Laboratory of Integrated Systems, Av. Prof. Luciano Gualberto, 158 São Paulo, SP Brazil 05508-900, Brazil

2. Centre de Recherche Informatique de Montréal, 550, Sherbrooke O., #100 Montréal, H3A 1B9, Qc, Canada

3. Oracle Brazil and Catholic University of Brasilia, SCN Qd. 02 – Bl. A-Salas 604 Brasilia, DF Brazil 70712-900, Brazil

Abstract

In this paper we present the results of an empirical study in which we have investigated Machine Learning (ML) algorithms with regard to their capabilities to accurately assess the correctability of faulty software components. Three different families algorithms have been analyzed: divide and conquer (top down induction decision tree), covering, and inductive logic programming (ILP). We have used (1) fault data collected on corrective maintenance activities for the Generalized Support Software reuse asset library located at the Flight Dynamics Division of NASA's GSFC and (2) product measures extracted directly from the faulty components of this library. In our data set, the software quality models generated by both C4.5-rules (a divide and conquer algorithm) and FOIL (an inductive logic programming one) presented the best results from the point of view of model accuracy.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Reference11 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3