Affiliation:
1. College of Information Science and Technology, Dalian Maritime University, Dalian 116026, P. R. China
2. Key Laboratory of Symbolic Computation and Knowledge, Engineering of Ministry of Education, Jilin University, Changchun 130012, P. R. China
Abstract
Manually inspecting bugs to determine their severity is often an enormous but essential software development task, especially when many participants generate a large number of bug reports in a crowdsourced software testing context. Therefore, boosting the capabilities of methods of predicting bug report severity is critically important for determining the priority of fixing bugs. However, typical classification techniques may be adversely affected when the severity distribution of the bug reports is imbalanced, leading to performance degradation in a crowdsourcing environment. In this study, we propose an enhanced oversampling approach called CR-SMOTE to enhance the classification of bug reports with a realistically imbalanced severity distribution. The main idea is to interpolate new instances into the minority category that are near the center of existing samples in that category. Then, we use an extreme learning machine (ELM) — a feedforward neural network with a single layer of hidden nodes — to predict the bug severity. Several experiments were conducted on three datasets from real bug repositories, and the results statistically indicate that the presented approach is robust against real data imbalance when predicting the severity of bug reports. The average accuracies achieved by the ELM in predicting the severity of Eclipse, Mozilla, and GNOME bug reports were 0.780, 0.871, and 0.861, which are higher than those of classifiers by 4.36%, 6.73%, and 2.71%, respectively.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software
Cited by
117 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献