Public Sentiments Analysis Based on Fuzzy Logic for Text

Author:

Wang Xinzhi1,Zhang Hui1,Xu Zheng2

Affiliation:

1. Department of Engineering Physics, Institute of Public Safety Research, Tsinghua University, Beijing 100084, P. R. China

2. The Third Research Institute of the Ministry of Public Security, Shanghai 201204, P. R. China

Abstract

Sentiment analysis from microblog platform has received an increasing interest from web mining community in recent years. Current sentiment analysis methods are mainly based on the hypothesis that each word expresses only one sentiment. However, human sentiment are prototyped and fuzzy-confined as declared in social psychology, which is conflicting with the hypothesis. This is one of the barriers that impede the computation of complex public sentiment of web events in microblog. Therefore, how to find a reasonable computational model, combining learning technology and human sentiment cognition theory, is a novel idea in event sentiment analysis of microblog. In this paper, a new sentiment computation approach, which is defined as public sentiments discriminator (PSD), considering both fuzzy logic and sentiment complexity, is proposed. Unlike traditional machine learning methods, PSD is based on the rational hypothesis that sentiments are correlated with each other. A three-level computing structure, sentiment-term level, microblog level and public sentiment level, is employed. Experiments show that the proposed approach, PSD, can achieve similar accuracy and [Formula: see text]1-measure but more cognitive results when compared with traditional well-known machine learning methods. These experimental studies have confirmed that PSD can generate an interpretable result with no restriction among sentiments.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dialogue Generation Model with Hierarchical Encoding and Semantic Segmentation of Dialogue Context;International Journal of Software Engineering and Knowledge Engineering;2024-03

2. MOID: Many-to-One Patent Graph Embedding Base Infringement Detection Model;International Journal of Software Engineering and Knowledge Engineering;2023-12-28

3. A Dual Decision-making Continuous Reinforcement Learning Method Based on Sim2Real;International Journal of Software Engineering and Knowledge Engineering;2023-10-13

4. Sentiment analysis using fuzzy logic: A comprehensive literature review;WIREs Data Mining and Knowledge Discovery;2023-06-20

5. Multimodal Cross-Attention Bayesian Network for Social News Emotion Recognition;2023 International Joint Conference on Neural Networks (IJCNN);2023-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3