Using API Call Sequences for IoT Malware Classification Based on Convolutional Neural Networks

Author:

Lin Qianguang1,Li Ni23,Qi Qi1,Hu Jiabin4

Affiliation:

1. School of Computer Science and Cyberspace Security, Hainan University, 58 Renmin Avenue Haikou, Hainan, P. R. China

2. School of Mathematics and Statistics, Hainan Normal University, 99 Longkun South Road, Haikou, Hainan, P. R. China

3. Key Laboratory of Data Science and Intelligence, Education of Ministry of Education, Hainan Normal University, Haikou, Hainan, P. R. China

4. School of Information and Communication Engineering, Hainan University, 58 Renmin Avenue, Haikou, Hainan, P. R. China

Abstract

Internet of Things (IoT) devices built on different processor architectures have increasingly become targets of adversarial attacks. In this paper, we propose an algorithm for the malware classification problem of the IoT domain to deal with the increasingly severe IoT security threats. Application executions are represented by sequences of consecutive API calls. The time series of data is analyzed and filtered based on the improved information gains. It performs more effectively than chi-square statistics, in reducing the sequence lengths of input data meanwhile keeping the important information, according to the experimental results. We use a multi-layer convolutional neural network to classify various types of malwares, which is suitable for processing time series data. When the convolution window slides down the time sequence, it can obtain higher-level positions by collecting different sequence features, thereby understanding the characteristics of the corresponding sequence position. By comparing the iterative efficiency of different optimization algorithms in the model, we select an algorithm that can approximate the optimal solution to a small number of iterations to speed up the convergence of the model training. The experimental results from real world IoT malware sample show that the classification accuracy of this approach can reach more than 98%. Overall, our method has demonstrated practical suitability for IoT malware classification with high accuracies and low computational overheads by undergoing a comprehensive evaluation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analyzing Malware From API Call Sequences Using Support Vector Machines;Advances in Cybersecurity, Cybercrimes, and Smart Emerging Technologies;2023

2. Software Engineering Classification Model and Algorithm Based on Big Data Technology;Procedia Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3