Case Study Investigation of the Fault Detection and Error Locating Effects of Architecture-based Software Testing

Author:

Lee Jihyun1,Kang Sungwon2

Affiliation:

1. Department of Software Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Korea

2. School of Computing, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea

Abstract

For software testing, it is well known that the architecture of a software system can be utilized to enhance testability, fault detection and error locating. However, how much and what effects architecture-based software testing has on software testing have been rarely studied. Thus, this paper undertakes case study investigation of the effects of architecture-based software testing specifically with respect to fault detection and error locating. Through comparing the outcomes with the conventional testing approaches that are not based on test architectures, we confirm the effectiveness of architecture-based software testing with respect to fault detection and error locating. The case studies show that using test architecture can improve fault detection rate by 44.1%–88.5% and reduce error locating time by 3%–65.2%, compared to the conventional testing that does not rely on test architecture. With regard to error locating, the scope of relevant components or statements was narrowed by leveraging test architecture for approximately 77% of the detected faults. We also show that architecture-based testing could provide a means of defining an exact oracle or oracles with range values. This study shows by way of case studies the extent to which architecture-based software testing can facilitate detecting certain types of faults and locating the errors that cause such faults. In addition, we discuss the contributing factors of architecture-based software testing which enable such enhancement in fault detection and error locating.

Funder

National Research Foundation of Korea

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Architecture of control system of automobile inspection line based on CAN bus;2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA);2022-01-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3