Affiliation:
1. Centre of Mechanics, Institute of Fundamental Technological Research, Department of Fluid Mechanics, Polish Academy of Sciences, Swietokrzyska 21, 00-049 Warsaw, Poland
2. Institute of Fundamental Technological Research, Department of Theory of Continuous Media, Polish Academy of Sciences, Swietokrzyska 21, 00-049 Warsaw, Poland
Abstract
Beginning from the relativistic Boltzmann equation in a curved space-time, and assuming that there exists a fiducial congruence of timelike world lines with four-velocity vector field u, it is the aim of this paper to present a systematic derivation of a hierarchy of closed systems of moment equations. These systems are found by using the closure by entropy maximization. Our concepts are primarily applied to the formalism of central moments because if an alternative and more familiar theory of covariant moments is taken into account, then the method of maximum entropy is ill-defined in a neighborhood of equilibrium states. The central moments are not covariant in the following sense: two observers looking at the same relativistic gas will, in general, extract two different sets of central moments, not related to each other by a tensorial linear transformation. After a brief review of the formalism of trace-free symmetric spacelike tensors, the differential equations for irreducible central moments are obtained and compared with those of Ellis et al. [Ann. Phys. (NY)150 (1983) 455]. We derive some auxiliary algebraic identities which involve the set of central moments and the corresponding set of Lagrange multipliers; these identities enable us to show that there is an additional balance law interpreted as the equation of balance of entropy. The above results are valid for an arbitrary choice of the Lorentzian metric g and the four-velocity vector field u. Later, the definition of u as in the well-known theory of Arnowitt, Deser, and Misner is proposed in order to construct a hierarchy of symmetric hyperbolic systems of field equations. Also, the Eckart and Landau–Lifshitz definitions of u are discussed. Specifically, it is demonstrated that they lead, in general, to the systems of nonconservative equations.
Publisher
World Scientific Pub Co Pte Lt
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献