STABILITY FOR A SYSTEM OF N FERMIONS PLUS A DIFFERENT PARTICLE WITH ZERO-RANGE INTERACTIONS

Author:

CORREGGI M.1,DELL'ANTONIO G.23,FINCO D.4,MICHELANGELI A.5,TETA A.6

Affiliation:

1. Dipartimento di Matematica, Università di Roma Tre, Largo San Leonardo Murialdo 1, 00146 Roma, Italy

2. Dipartimento di Matematica, "Sapienza" Università di Roma, P.le A. Moro 5, 00185 Roma, Italy

3. Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy

4. Facoltà di Ingegneria, Università Telematica Internazionale Uninettuno, Corso V. Emanuele II 39, 00186 Roma, Italy

5. Institute of Mathematics, LMU Munich, Theresienstrasse 39, 80333 Munich, Germany

6. Dipartimento di Matematica Pura ed Applicata, Università di L'Aquila, Via Vetoio, Loc. Coppito, 67010 L'Aquila, Italy

Abstract

We study the stability problem for a non-relativistic quantum system in dimension three composed by N ≥ 2 identical fermions, with unit mass, interacting with a different particle, with mass m, via a zero-range interaction of strength α ∈ ℝ. We construct the corresponding renormalized quadratic (or energy) form [Formula: see text] and the so-called Skornyakov–Ter–Martirosyan symmetric extension Hα, which is the natural candidate as Hamiltonian of the system. We find a value of the mass m*(N) such that for m > m*(N) the form [Formula: see text] is closed and bounded from below. As a consequence, [Formula: see text] defines a unique self-adjoint and bounded from below extension of Hα and therefore the system is stable. On the other hand, we also show that the form [Formula: see text] is unbounded from below for m < m*(2). In analogy with the well-known bosonic case, this suggests that the system is unstable for m < m*(2) and the so-called Thomas effect occurs.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the discrete spectrum of the Schrödinger operator using the 2+1 fermionic trimer on the lattice;Nanosystems: Physics, Chemistry, Mathematics;2023-10-31

2. Zero-Range Hamiltonian for a Bose Gas with an Impurity;Complex Analysis and Operator Theory;2023-06-10

3. On the Hamiltonian for Three Bosons with Point Interactions;Quantum and Stochastic Mathematical Physics;2023

4. Three-Body Hamiltonian with Regularized Zero-Range Interactions in Dimension Three;Annales Henri Poincaré;2022-07-10

5. Models of Zero-Range Interaction for the Bosonic Trimer at Unitarity;Springer Monographs in Mathematics;2022-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3