High-velocity estimates for Schrödinger operators in two dimensions: Long-range magnetic potentials and time-dependent inverse scattering

Author:

Ballesteros Miguel1,Weder Ricardo1

Affiliation:

1. Departamento de Física Matemática, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Apartado Postal 20-126, IIMAS-UNAM, Col. San Angel, C.P. 01000, México D. F., México

Abstract

We introduce a general class of long-range magnetic potentials and derive high velocity limits for the corresponding scattering operators in quantum mechanics, in the case of two dimensions. We analyze the high velocity limits that we obtain in the presence of an obstacle and we uniquely reconstruct from them the electric potential and the magnetic field outside the obstacle, that are accessible to the particles. We additionally reconstruct the inaccessible fluxes (magnetic fluxes produced by fields inside the obstacle) modulo 2π, which give a proof of the Aharonov–Bohm effect. For every magnetic potential A in our class, we prove that its behavior at infinity [Formula: see text] can be characterized in a natural way; we call it the long-range part of the magnetic potential. Under very general assumptions, we prove that [Formula: see text] can be uniquely reconstructed for every [Formula: see text]. We characterize properties of the support of the magnetic field outside the obstacle that permit us to uniquely reconstruct [Formula: see text] either for all [Formula: see text] or for [Formula: see text] in a subset of 𝕊1. We also give a wide class of magnetic fields outside the obstacle allowing us to uniquely reconstruct the total magnetic flux (and [Formula: see text] for all [Formula: see text]). This is relevant because, as it is well-known, in general the scattering operator (even if it is known for all velocities or energies) does not define uniquely the total magnetic flux (and [Formula: see text]). We analyze additionally injectivity (i.e. uniqueness without giving a method for reconstruction) of the high velocity limits of the scattering operator with respect to [Formula: see text]. Assuming that the magnetic field outside the obstacle is not identically zero, we provide a class of magnetic potentials for which injectivity is valid.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction;Direct and Inverse Scattering for the Matrix Schrödinger Equation;2020-05-19

2. Inverse Scattering for the Magnetic Schrödinger Operator on Surfaces with Euclidean Ends;Communications in Mathematical Physics;2017-08-23

3. High-momenta estimates for the Klein−Gordon equation: long-range magnetic potentials and time-dependent inverse scattering;Journal of Physics A: Mathematical and Theoretical;2016-03-02

4. Aharonov–Bohm Effect and High-Momenta Inverse Scattering for the Klein–Gordon Equation;Annales Henri Poincaré;2016-01-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3