QUANTIZATION AND SUPERSELECTION SECTORS I: TRANSFORMATION GROUP C*-ALGEBRAS

Author:

LANDSMAN N.P.12

Affiliation:

1. Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, NL-1018 XE Amsterdam, The Netherlands

2. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, United Kingdom

Abstract

Quantization is defined as the act of assigning an appropriate C*-algebra [Formula: see text] to a given configuration space Q, along with a prescription mapping self-adjoint elements of [Formula: see text] into physically interpretable observables. This procedure is adopted to solve the problem of quantizing a particle moving on a homogeneous locally compact configuration space Q=G/H. Here [Formula: see text] is chosen to be the transformation group C*-algebra corresponding to the canonical action of G on Q. The structure of these algebras and their representations are examined in some detail. Inequivalent quantizations are identified with inequivalent irreducible representations of the C*-algebra corresponding to the system, hence with its superselection sectors. Introducing the concept of a pre-Hamiltonian, we construct a large class of G-invariant time-evolutions on these algebras, and find the Hamiltonians implementing these time-evolutions in each irreducible representation of [Formula: see text]. “Topological” terms in the Hamiltonian (or the corresponding action) turn out to be representation-dependent, and are automatically induced by the quantization procedure. Known “topological” charge quantization or periodicity conditions are then identically satisfied as a consequence of the representation theory of [Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Infinite Scale Skepticism: Probing the Epistemology of the Limit of Infinite Degrees of Freedom and Hilbert Space Non-Uniqueness;The British Journal for the Philosophy of Science;2023-08-15

2. Snowmass white paper: The quest to define QFT;International Journal of Modern Physics A;2023-02-20

3. The Classical–Quantum Correspondence;Elements Philos Phys;2022-12-16

4. Manifold topology, observables, and gauge group;Journal of Mathematical Physics;2021-11-01

5. Reductive Explanation and the Construction of Quantum Theories;The British Journal for the Philosophy of Science;2020-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3