DIAGONAL CROSSED PRODUCTS BY DUALS OF QUASI-QUANTUM GROUPS

Author:

HAUSSER FRANK1,NILL FLORIAN1

Affiliation:

1. Freie Universiät Berlin, Institut für Theoretische Physik, Arnimalle 14, D-14195 Berlin, Germany

Abstract

A two-sided coaction [Formula: see text] of a Hopf algebra [Formula: see text] on an associative algebra ℳ is an algebra map of the form [Formula: see text] , where (λ,ρ) is a commuting pair of left and right [Formula: see text] -coactions on ℳ, respectively. Denoting the associated commuting right and left actions of the dual Hopf algebra [Formula: see text] on ℳ by ◃ and ▹, respectively, we define the diagonal crossed product[Formula: see text] to be the algebra generated by ℳ and [Formula: see text] with relations given by [Formula: see text] We give a natural generalization of this construction to the case where [Formula: see text] is a quasi-Hopf algebra in the sense of Drinfeld and, more generally, also in the sense of Mack and Schomerus (i.e. where the coproduct Δ is non-unital). In these cases our diagonal crossed product will still be an associative algebra structure on [Formula: see text] extending [Formula: see text], even though the analogue of an ordinary crossed product [Formula: see text] in general is not well defined as an associative algebra. Applications of our formalism include the field algebra constructions with quasi-quantum group symmetry given by G. Mack and V. Schomerus [31, 47] as well as the formulation of Hopf spin chains or lattice current algebras based on truncated quantum groups at roots of unity. In the case [Formula: see text] and λ=ρ=Δ we obtain an explicit definition of the quantum double [Formula: see text] for quasi-Hopf algebras [Formula: see text] , which before had been described in the form of an implicit Tannaka–Krein reconstruction procedure by S. Majid [35]. We prove that [Formula: see text] is itself a (weak) quasi-bialgebra and that any diagonal crossed product [Formula: see text] naturally admits a two-sided [Formula: see text] -coaction. In particular, the above-mentioned lattice models always admit the quantum double [Formula: see text] as a localized cosymmetry, generalizing results of Nill and Szlachányi [42]. A complete proof that [Formula: see text] is even a (weak) quasi-triangular quasi-Hopf algebra will be given in a separate paper [27].

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Double wreath quasi-Hopf algebras;Journal of Algebra;2025-01

2. On anchored Lie algebras and the Connes–Moscovici bialgebroid construction;Journal of Noncommutative Geometry;2022-08-30

3. A bicategorical approach to actions of monoidal categories;Journal of Algebra and Its Applications;2022-01-10

4. The Quantum Symmetry in Nonbalanced Hopf Spin Models Determined by a Normal Coideal Subalgebra;Journal of Mathematics;2021-05-05

5. Galois and cleft monoidal cowreaths. Applications;Memoirs of the American Mathematical Society;2021-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3