GEOMETRY AND ACTION-ANGLE VARIABLES OF MULTI SOLITON SYSTEMS

Author:

FUCHSSTEINER BENNO1,OEVEL GUDRUN1

Affiliation:

1. University of Paderborn, D 4790 Paderborn, Germany

Abstract

For all completely integrable nonlinear hamiltonian systems which have a localized hereditary recursion operator, a complete action-angle variable representation is given for the multisoliton manifolds. Here multisoliton manifolds are defined as reductions with respect to suitable linear sums of symmetry generators. The embedding of these multisoliton manifolds, into the manifold of all solutions, is described in terms of the construction of its tangent bundle. The basis vectors of the respective tangent spaces are given by local densities. This local geometrical description of the tangent bundle turns out to be independent of the special structure of the particular equation under consideration. The principal tool for finding the necessary geometrical quantities are the canonical commutation relations for the so called mastersymmetries. These relations reflect the hereditary structure. All mastersymmetries turn out to be elements of the tangent space. Although the mastersymmetries, in the case under consideration, principally cannot be hamiltonian, suitable integrating factors are found which make them hamiltonian on the reduced manifold. So, up to suitable linear combinations, the mastersymmetries are shown to correspond to the angle variables. The action-angle-structure found in this way is put into one-to-one correspondence with the spectrum of the recursion operator. The spectrum of this operator is shown to be of multiplicity two and all its eigenvectors are explicitly constructed. Again, this construction is of a canonical nature, i.e., independent of the particular equation under consideration. For vanishing boundary conditions the given action-angle-structure is compared to the asymptotic data (speeds and phases), and the gradients of these global asymptotic data are given in terms of local quantities. It turns out that for all times during the evolution the derivatives of the field function with respect to any particular asymptotic datum yields an eigenvector of the recursion operator. Thus a method is given for reconstructing the spectral resolution of the recursion operator by partial derivatives. This method yields new methods of solution for other equations (for example the singularity equation and the Harry Dym equation). The superposition formula for phase shifts is shown to hold in all generality for the systems under consideration. Several examples are given. An extensive comparison of the present results with the work of others is carried out.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3