Affiliation:
1. Physics Department, Boğaziçi University, Bebek, İstanbul, Turkey
Abstract
We look for "static" spherically symmetric solutions of Einstein's Equations for perfect fluid source with equation of state p = wρ, for constant w. We consider all four cases compatible with the standard ansatz for the line element, discussed in previous work. For each case, we derive the equation obeyed by the mass function or its analogs. For these equations, we find all finite-polynomial solutions, including possible negative powers. For the standard case, we find no significantly new solutions, but show that one solution is a static phantom solution, another a black hole-like solution. For the dynamic and/or tachyonic cases we find, among others, dynamic and static tachyonic solutions, a Kantowski–Sachs (KS) class phantom solution, another KS-class solution for dark energy, and a second black hole-like solution. The black hole-like solutions feature segregated normal and tachyonic matter, consistent with the assertion of previous work. In the first black hole-like solution, tachyonic matter is inside the horizon, in the second, outside. The static phantom solution, a limit of an old one, is surprising at first, since phantom energy is usually associated with super-exponential expansion. The KS-phantom solution stands out since its "mass function" is a ninth order polynomial.
Publisher
World Scientific Pub Co Pte Lt
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献