Affiliation:
1. Laboratoire de mathématiques, Université de Paris XI, 91 405 Orsay Cedex, France
Abstract
We introduce an abstract class of bosonic QFT Hamiltonians and study their spectral and scattering theories. These Hamiltonians are of the form H = dΓ(ω) + V acting on the bosonic Fock space Γ(𝔥), where ω is a massive one-particle Hamiltonian acting on 𝔥 and V is a Wick polynomial Wick(w) for a kernel w satisfying some decay properties at infinity. We describe the essential spectrum of H, prove a Mourre estimate outside a set of thresholds and prove the existence of asymptotic fields. Our main result is the asymptotic completeness of the scattering theory, which means that the CCR representations given by the asymptotic fields are of Fock type, with the asymptotic vacua equal to the bound states of H. As a consequence, H is unitarily equivalent to a collection of second quantized Hamiltonians.
Publisher
World Scientific Pub Co Pte Lt
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献