DIRICHLET FORMS IN TERMS OF WHITE NOISE ANALYSIS I: CONSTRUCTION AND QFT EXAMPLES

Author:

ALBEVERIO S.1234,HIDA T.5,POTTHOFF J.26,RÖCKNER M.7,STREIT L.289

Affiliation:

1. Ruhr-Universität Bochum, FRG

2. BiBoS, Bielefeld-Bochum, FRG

3. SFB 237, Bochum-Essen-Düsseldorf, FRG

4. CERFIM, Locarno, Switzerland

5. Nagoya University, Japan

6. Louisiana State University, Baton Rouge, USA

7. University of Edinburgh, UK

8. Universität Biefeld, FRG

9. Universidade do Minho, Braga, Portugal

Abstract

Random fields are given in terms of measures which (in general) are singular with respect to that of white noise. However, many such measures can be expressed in terms of white noise through a positive generalized functional acting as a generalized Radon-Nikodym derivative. We give criteria for this to be the case and show that these criteria are fulfilled by Schwinger and Wightman functionals of various nontrivial quantum field theory models. Furthermore a number of closability criteria are given and discussed for the Dirichlet forms associated with positive generalized functionals of white noise. In a second paper we apply these results to the construction of Markov and of quantum fields.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy Forms and Quantum Dynamics;Quantum and Stochastic Mathematical Physics;2023

2. Non-local Markovian Symmetric Forms on Infinite Dimensional Spaces;Potential Analysis;2022-08-16

3. The elliptic stochastic quantization of some two dimensional Euclidean QFTs;Annales de l'Institut Henri Poincaré, Probabilités et Statistiques;2021-11-01

4. Non-local Markovian Symmetric Forms on Infinite Dimensional Spaces I. The closability and quasi-regularity;Communications in Mathematical Physics;2021-08-14

5. Invariant measures for SDEs driven by Lévy noise: A case study for dissipative nonlinear drift in infinite dimension;Communications in Mathematical Sciences;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3