Minimization of energy per particle among Bravais lattices in ℝ2: Lennard–Jones and Thomas–Fermi cases

Author:

Bétermin Laurent1,Zhang Peng1

Affiliation:

1. Université Paris-Est Créteil, LAMA – CNRS UMR 8050, 61, Avenue du Général de Gaulle, 94010 Créteil, France

Abstract

We prove in this paper that the minimizer of Lennard–Jones energy per particle among Bravais lattices is a triangular lattice, i.e. composed of equilateral triangles, in ℝ2 for large density of points, while it is false for sufficiently small density. We show some characterization results for the global minimizer of this energy and finally we also prove that the minimizer of the Thomas–Fermi energy per particle in ℝ2 among Bravais lattices with fixed density is triangular.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,General Mathematics

Reference35 articles.

1. The magnetic properties of superconducting alloys

2. New results for molecular formation under pairwise potential minimization

3. C. Bachoc and B. Venkov, Réseaux euclidiens, designs sphériques et formes modulaires: Autour des travaux de Boris Venkov, Monographie de l'Enseignement Mathématique (L'Enseignement Mathématique, Geneva, 2001) pp. 87–111.

4. Lower Bound for the Interatomic Distance in Lennard-Jones Clusters

5. From Molecular Models¶to Continuum Mechanics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structural transitions in interacting lattice systems;Analysis and Mathematical Physics;2024-03-15

2. Maximal Polarization for Periodic Configurations on the Real Line;International Mathematics Research Notices;2024-02-05

3. Optimality of the triangular lattice for Lennard–Jones type lattice energies: a computer-assisted method;Journal of Physics A: Mathematical and Theoretical;2023-03-16

4. On minima of difference of theta functions and application to hexagonal crystallization;Mathematische Annalen;2022-09-10

5. On Minima of Sum of Theta Functions and Application to Mueller–Ho Conjecture;Archive for Rational Mechanics and Analysis;2021-11-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3