Affiliation:
1. Département de Mathématiques, Faculté des Sciences de Bizerte, Université Tunis II, Jarzouna 7021, Bizerte, Tunisia
2. Département de Mathématiques, Faculté des Sciences de Tunis, Université Tunis II, Campus Universitaire, 1060 Tunis, Tunisia
Abstract
This paper studies the global existence and the asymptotic self-similar behavior of solutions of the semilinear parabolic system ∂tu=Δu+a1|u|p1-1u+b1|v|q1-1v, ∂tv=Δv+a2|v|p2-1v+b2|u|q2-1u, on (0,∞)×ℝn, where a1, bi∈ℝ and pi, qi>1. Let p= min {p1,p2, q1(1+q2)/(1+q1), q2(1+q1)/(1+q2)}. Under the condition p>1+2/n we prove the existence of globally decaying mild solutions with small initial data. Some of them are asymptotic, for large time, to self-similar solutions of appropriate asymptotic systems having each one a self-similar structure. All possible asymptotic self-similar behaviors are discussed in terms of exponents pi, qi, the space dimension n and the asymptotic spatial profile of the related initial data.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,General Mathematics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献