Asymptotic behavior of solutions to differential equations with p(t)-Laplacian

Author:

Došlá Zuzana1,Fujimoto Kōdai2

Affiliation:

1. Department of Mathematics and Statistics, Masaryk University, Kotlářská 2, Brno CZ-61137, Czech Republic

2. Faculty of Liberal Arts and Sciences, Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, Sakai, Osaka 599-8531, Japan

Abstract

This paper deals with the second-order nonlinear differential equation [Formula: see text] involving [Formula: see text]-Laplacian. The existence and the uniqueness of nonoscillatory solutions of this equation in certain classes, which are related with integral conditions, are studied. Moreover, a minimal set for solutions of this equation is introduced as an extension of the concept of principal solutions for linear equations. Obtained results extend the results for equations with [Formula: see text]-Laplacian.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leighton–Wintner type oscillation criteria for second-order differential equations with p ( t ) -Laplacian;Electronic Journal of Qualitative Theory of Differential Equations;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3