Affiliation:
1. Institute of Mathematics, AMSS, Chinese Academy of Sciences, 100080 Beijing, P. R. China
Abstract
This paper is concerned with homoclinic orbits in the Hamiltonian system [Formula: see text] where H is periodic in t with Hz(t, z) = L(t)z + Rz(t, z), Rz(t, z) = o(|z|) as z → 0. We find a condition on the matrix valued function L to describe the spectrum of operator [Formula: see text] so that a proper variational formulation is presented. Supposing Rz is asymptotically linear as |z| → ∞ and symmetric in z, we obtain infinitely many homoclinic orbits. We also treat the case where Rz is super linear as |z| → ∞ with assumptions different from those studied previously in relative work, and prove existence and multiplicity of homoclinic orbits. Our arguments are based on some recent information on strongly indefinite functionals in critical point theory.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,General Mathematics
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献