Affiliation:
1. UMR 6629 CNRS, Ecole Centrale de Nantes, BP 92101, F-44321 Nantes Cedex 03, France
2. UMR 8628 CNRS, Département de Mathématiques, Université Paris-Sud, F-91405 Orsay, France
Abstract
As a consequence of a rather complete analysis of the qualitative properties of the solutions of the Ginzburg–Landau equations, we prove, in this paper, both the continuity of a fundamental map σ, called response map in the physical literature on superconductors, and the convergence of an efficient algorithm for the computation of the graph of σ. The response map σ gives the intensity h of the external magnetic field for which the Ginzburg–Landau equations (in a half-space) have a solution such that the parameter order has a prescribed value at the boundary of the sample. Our study involves a shooting method on either one or the other unknown of the system; our algorithm has been introduced in Bolley–Helffer for small values of the Ginzburg–Landau parameter κ and extended in Bolley to any value of κ. Our preceding mathematical studies were not sufficient to prove the convergence, but a recent result (in Ref. 3) on the monotonicity of the solutions with respect to h, combined with a more extensive use of the properties of the solutions of the Ginzburg–Landau system, allow us to complete the proof and to get, as a by-product, the continuity of σ.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献