Affiliation:
1. Department of Mathematics, UCLA, Los Angeles, CA 90024, USA
Abstract
The analysis of criminal behavior with mathematical tools is a fairly new idea, but one which can be used to obtain insight on the dynamics of crime. In a recent work,34 Short et al. developed an agent-based stochastic model for the dynamics of residential burglaries. This model produces the right qualitative behavior, that is, the existence of spatio-temporal collections of criminal activities or "hotspots", which have been observed in residential burglary data. In this paper, we prove local existence and uniqueness of solutions to the continuum version of this model, a coupled system of partial differential equations, as well as a continuation argument. Furthermore, we compare this PDE model with a generalized version of the Keller–Segel model for chemotaxis as a first step to understanding possible conditions for global existence versus blow-up of the solutions in finite time.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献