A linearized approach to worst-case design in parametric and geometric shape optimization

Author:

Allaire Grégoire1,Dapogny Charles23

Affiliation:

1. Centre de Mathématiques Appliquées, UMR 7641, École Polytechnique 91128 Palaiseau, France

2. UPMC Univ. Paris 06, UMR 7598, Laboratoire J.-L. Lions, F-75005 Paris, France

3. Renault DREAM-DELT'A Guyancourt, France

Abstract

The purpose of this paper is to propose a deterministic method for optimizing a structure with respect to its worst possible behavior when a "small" uncertainty exists over some of its features. The main idea of the method is to linearize the considered cost function with respect to the uncertain parameters, then to consider the supremum function of the obtained linear approximation, which can be rewritten as a more "classical" function of the design, owing to standard adjoint techniques from optimal control theory. The resulting "linearized worst-case" objective function turns out to be the sum of the initial cost function and of a norm of an adjoint state function, which is dual with respect to the considered norm over perturbations. This formal approach is very general, and can be justified in some special cases. In particular, it allows to address several problems of considerable importance in both parametric and shape optimization of elastic structures, in a unified framework.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Inverse Homogenization of Elastic Microstructures;Journal of Optimization Theory and Applications;2023-07-21

2. Two-Scale Elastic Shape Optimization for Additive Manufacturing;Multiscale Modeling & Simulation;2023-02-02

3. Bernoulli Free Boundary Problems Under Uncertainty: The Convex Case;Computational Methods in Applied Mathematics;2022-11-24

4. Topology optimization of continuum structures under geometric uncertainty using a new extended finite element method;Engineering Optimization;2021-08-31

5. Shape and topology optimization;Geometric Partial Differential Equations - Part II;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3