Elasto-plastic evolution of single crystals driven by dislocation flow

Author:

Hudson Thomas1,Rindler Filip1

Affiliation:

1. Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

Abstract

This work introduces a model for large-strain, geometrically nonlinear elasto-plastic dynamics in single crystals. The key feature of our model is that the plastic dynamics are entirely driven by the movement of dislocations, that is, 1-dimensional topological defects in the crystal lattice. It is well known that glide motion of dislocations is the dominant microscopic mechanism for plastic deformation in many crystalline materials, most notably in metals. We propose a novel geometric language, built on the concepts of space-time “slip trajectories” and the “crystal scaffold” to describe the movement of (discrete) dislocations and to couple this movement to plastic flow. The energetics and dissipation relationships in our model are derived from first principles drawing on the theories of crystal modeling, elasticity, and thermodynamics. The resulting force balances involve a new configurational stress tensor describing the forces acting against slip. In order to place our model into context, we further show that it recovers several laws that were known in special cases before, most notably the equation for the Peach–Koehler force (linearized configurational force) and the fact that the combination of all dislocations yields the curl of the plastic distortion field. Finally, we also include a brief discussion on how a number of other effects, such as hardening, softening, dislocation climb, and coarse-graining, could be incorporated into our model.

Funder

European Research Council

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3