Affiliation:
1. Department of Theoretical Physics, University of Geneva, Switzerland
Abstract
We investigate analytically and numerically the existence of stationary solutions converging to zero at infinity for the incompressible Navier–Stokes equations in a two-dimensional exterior domain. Physically, this corresponds for example to fixing a propeller by an external force at some point in a two-dimensional fluid filling the plane and to ask if the solution becomes steady with the velocity at infinity equal to zero. To answer this question, we find the asymptotic behaviour for such steady solutions in the case where the net force on the propeller is nonzero. In contrast to the three-dimensional case, where the asymptotic behaviour of the solution to this problem is given by a scale invariant solution, the asymptote in the two-dimensional case is not scale invariant and has a wake. We provide an asymptotic expansion for the velocity field at infinity, which shows that, within a wake of width |x|2/3, the velocity decays like |x|-1/3, whereas outside the wake, it decays like |x|-2/3. We check numerically that this behaviour is accurate at least up to second order and demonstrate how to use this information to significantly improve the numerical simulations. Finally, in order to check the compatibility of the present results with rigorous results for the case of zero net force, we consider a family of boundary conditions on the body which interpolate between the nonzero and the zero net force case.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献