EXISTENCE OF GLOBAL WEAK SOLUTIONS FOR SOME POLYMERIC FLOW MODELS

Author:

BARRETT JOHN W.1,SCHWAB CHRISTOPH2,SÜLI ENDRE3

Affiliation:

1. Department of Mathematics, Imperial College London, London SW7 2AZ, UK

2. Seminar for Applied Mathematics, ETH-Zentrum, HG G 58.1, CH-8092 Zürich, Switzerland

3. Oxford University Computing Laboratory, Parks Road, Oxford OX1 3QD, UK

Abstract

We study the existence of global-in-time weak solutions to a coupled microscopic–macroscopic bead-spring model which arises from the kinetic theory of diluted solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ ℝd, d = 2, 3, for the velocity and the pressure of the fluid, with an extra-stress tensor as right-hand side in the momentum equation. The extra-stress tensor stems from the random movement of the polymer chains and is defined through the associated probability density function which satisfies a Fokker–Planck type degenerate parabolic equation. Upon appropriate smoothing of the convective velocity field in the Fokker–Planck equation, and in some circumstances, of the extra-stress tensor, we establish the existence of global-in-time weak solutions to this regularised bead-spring model for a general class of spring-force-potentials including in particular the widely used FENE (Finitely Extensible Nonlinear Elastic) model.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3