Tangential Navier–Stokes equations on evolving surfaces: Analysis and simulations

Author:

Olshanskii Maxim A.1,Reusken Arnold2,Zhiliakov Alexander1

Affiliation:

1. Department of Mathematics, University of Houston, Houston, Texas 77204, USA

2. Institut für Geometrie und Praktische Mathematik, RWTH-Aachen University, Aachen, D-52056, Germany

Abstract

The paper considers a system of equations that models a lateral flow of a Boussinesq–Scriven fluid on a passively evolving surface embedded in [Formula: see text]. For the resulting Navier–Stokes type system, posed on a smooth closed time-dependent surface, we introduce a weak formulation in terms of functional spaces on a space-time manifold defined by the surface evolution. The weak formulation is shown to be well-posed for any finite final time and without smallness conditions on data. We further extend an unfitted finite element method, known as TraceFEM, to compute solutions to the fluid system. Convergence of the method is demonstrated numerically. In another series of experiments we visualize lateral flows induced by smooth deformations of a material surface.

Funder

National Science Foundation

German Research Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3