A IETI-DP method for discontinuous Galerkin discretizations in isogeometric analysis with inexact local solvers

Author:

Montardini Monica1,Sangalli Giancarlo1,Schneckenleitner Rainer2,Takacs Stefan3,Tani Mattia1

Affiliation:

1. Dipartimento di Matematica “F. Casorati”, Università degli studi di Pavia, IMATI-CNR, Via Adolfo Ferrata 5a, 27100 Pavia PV, Italia

2. Electrical Engineering Unit, Tampere University, Kalevantie 4, 33100 Tampere, Finland

3. Institute of Computational Mathematics, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria

Abstract

We construct solvers for an isogeometric multi-patch discretization, where the patches are coupled via a discontinuous Galerkin approach, which allows for the consideration of discretizations that do not match on the interfaces. We solve the resulting linear system using a Dual-Primal IsogEometric Tearing and Interconnecting (IETI-DP) method. We are interested in solving the arising patch-local problems using iterative solvers since this allows for the reduction of the memory footprint. We solve the patch-local problems approximately using the Fast Diagonalization method, which is known to be robust in the grid size and the spline degree. To obtain the tensor structure needed for the application of the Fast Diagonalization method, we introduce an orthogonal splitting of the local function spaces. We present a convergence theory for two-dimensional problems that confirms that the condition number of the preconditioned system only grows poly-logarithmically with the grid size. The numerical experiments confirm this finding. Moreover, they show that the convergence of the overall solver only mildly depends on the spline degree. We observe a mild reduction of the computational times and a significant reduction of the memory requirements in comparison to standard IETI-DP solvers using sparse direct solvers for the local subproblems. Furthermore, the experiments indicate good scaling behavior on distributed memory machines. Additionally, we present an extension of the solver to three-dimensional problems and provide numerical experiments assessing good performance also in that setting.

Funder

Austrian Science Fund

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3