Coupled dynamics of endemic disease transmission and gradual awareness diffusion in multiplex networks

Author:

Wu Qingchu1,Hadzibeganovic Tarik2,Han Xiao-Pu3ORCID

Affiliation:

1. School of Mathematics and Statistics, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China

2. Institute of Psychology, Faculty of Natural Sciences, University of Graz, Graz 8010, Austria

3. Alibaba Research Center for Complexity Sciences, Institute of Information Economy and Alibaba Business School, Hangzhou Normal University, Hangzhou 311121, P. R. China

Abstract

Understanding the interplay between human behavioral phenomena and infectious disease dynamics has been one of the central challenges of mathematical epidemiology. However, socio-cognitive processes critical for the initiation of desired behavioral responses during an outbreak have often been neglected or oversimplified in earlier models. Combining the microscopic Markov chain approach with the law of total probability, we herein institute a mathematical model describing the dynamic interplay between stage-based progression of awareness diffusion and endemic disease transmission in multiplex networks. We analytically derived the epidemic thresholds for both discrete-time and continuous-time versions of our model, and we numerically demonstrated the accuracy of our analytic arguments in capturing the time course and the steady state of the coupled disease-awareness dynamics. We found that our model is exact for arbitrary unclustered multiplex networks, outperforming a widely adopted probability-tree-based method, both in the prediction of the time-evolution of a contagion and in the final epidemic size. Our findings show that informing the unaware individuals about the circulating disease will not be sufficient for the prevention of an outbreak unless the distributed information triggers strong awareness of infection risks with adequate protective measures, and that the immunity of highly-aware individuals can elevate the epidemic threshold, but only if the rate of transition from weak to strong awareness is sufficiently high. Our study thus reveals that awareness diffusion and other behavioral parameters can nontrivially interact when producing their effects on epidemiological dynamics of an infectious disease, suggesting that future public health measures should not ignore this complex behavioral interplay and its influence on contagion transmission in multilayered networked systems.

Funder

National Natural Science Foundation of China

Jiangxi Provincial Natural Science Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3