Affiliation:
1. Seminar for Applied Mathematics, Department of Mathematics, ETH Zürich, Rämistrasse 101, CH-8092 Zürich, Switzerland
Abstract
We propose and analyze several multilevel algorithms for the fast simulation of possibly nonstationary Gaussian random fields (GRFs) indexed, for example, by the closure of a bounded domain [Formula: see text] or, more generally, by a compact metric space [Formula: see text] such as a compact [Formula: see text]-manifold [Formula: see text]. A colored GRF [Formula: see text], admissible for our algorithms, solves the stochastic fractional-order equation [Formula: see text] for some [Formula: see text], where [Formula: see text] is a linear, local, second-order elliptic self-adjoint differential operator in divergence form and [Formula: see text] is white noise on [Formula: see text]. We thus consider GRFs on [Formula: see text] with covariance operators of the form [Formula: see text]. The proposed algorithms numerically approximate samples of [Formula: see text] on nested sequences [Formula: see text] of regular, simplicial partitions [Formula: see text] of [Formula: see text] and [Formula: see text], respectively. Work and memory to compute one approximate realization of the GRF [Formula: see text] on the triangulation [Formula: see text] of [Formula: see text] with consistency [Formula: see text], for some consistency order [Formula: see text], scale essentially linearly in [Formula: see text], independent of the possibly low regularity of the GRF. The algorithms are based on a sinc quadrature for an integral representation of (the application of) the negative fractional-order elliptic “coloring” operator [Formula: see text] to white noise [Formula: see text]. For the proposed numerical approximation, we prove bounds of the computational cost and the consistency error in various norms.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献