An Lp spaces-based mixed virtual element method for the two-dimensional Navier–Stokes equations

Author:

Gatica Gabriel N.1,Sequeira Filánder A.2

Affiliation:

1. CI2MA and Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepcion, Chile

2. Escuela de Matemática, Universidad Nacional, Campus Omar Dengo, Apartado Postal 86-3000, Heredia, Costa Rica

Abstract

In this paper we extend the utilization of the Banach spaces-based formulations, usually employed for solving diverse nonlinear problems in continuum mechanics via primal and mixed finite element methods, to the virtual element method (VEM) framework and its respective applications. More precisely, we propose and analyze an [Formula: see text] spaces-based mixed virtual element method for a pseudostress-velocity formulation of the two-dimensional Navier–Stokes equations with Dirichlet boundary conditions. To this end, a dual-mixed approach determined by the introduction of a nonlinear tensor linking the usual pseudostress for the Stokes equations with the convective term is employed. As a consequence, this new tensor, say [Formula: see text], and the velocity [Formula: see text] of the fluid constitute the unknowns of the formulation, whereas the pressure is computed via a post-processing formula. The simplicity of the resulting VEM scheme is reflected by the absence of augmented terms, on the contrary to previous works on this and related models, and by the incorporation in it of only the projector onto the piecewise polynomial tensors and the usual stabilizer depending on the degrees of freedom of the virtual element subspace approximating [Formula: see text]. In turn, the non-virtual but explicit subspace given by the piecewise polynomial vectors of degree [Formula: see text] is employed to approximate [Formula: see text]. The corresponding solvability analysis is carried out by using appropriate fixed-point arguments, along with the discrete versions of the Babuška–Brezzi theory and the Banach–Nečas–Babuška theorem, both in subspaces of Banach spaces. A Strang-type lemma is applied to derive the a priori error estimates for the virtual element solution as well as for the fully computable approximation of [Formula: see text], the post-processed pressure, and a second post-processed approximation of [Formula: see text]. Finally, several numerical results illustrating the performance of the mixed-VEM scheme and confirming the rates of convergence predicted by the theory are reported.

Funder

ANID-Chile

Centro De Modelamiento Matematico

Anillo of Computational Mathematics for Desalination Processes

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3