Affiliation:
1. Department of Mathematics, University of Pavia, Pavia 27100, Italy
2. Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK
Abstract
We consider the Helmholtz transmission problem with one penetrable star-shaped Lipschitz obstacle. Under a natural assumption about the ratio of the wavenumbers, we prove bounds on the solution in terms of the data, with these bounds explicit in all parameters. In particular, the (weighted) [Formula: see text] norm of the solution is bounded by the [Formula: see text] norm of the source term, independently of the wavenumber. These bounds then imply the existence of a resonance-free strip beneath the real axis. The main novelty is that the only comparable results currently in the literature are for smooth, convex obstacles with strictly positive curvature, while here we assume only Lipschitz regularity and star-shapedness with respect to a point. Furthermore, our bounds are obtained using identities first introduced by Morawetz (essentially integration by parts), whereas the existing bounds use the much-more sophisticated technology of microlocal analysis and propagation of singularities. We also adapt existing results to show that if the assumption on the wavenumbers is lifted, then no bound with polynomial dependence on the wavenumber is possible.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献