Geometric linearization of theories for incompressible elastic materials and applications

Author:

Jesenko Martin1,Schmidt Bernd2

Affiliation:

1. Fakulteta za gradbeništvo in geodezijo, Univerza v Ljubljani, Jamova 2, Ljubljana, 1000, Slovenia

2. Institut für Mathematik, Universität Augsburg, Universitätsstraße 14, Augsburg, 86159, Germany

Abstract

We derive geometrically linearized theories for incompressible materials from nonlinear elasticity theory in the small displacement regime. Our nonlinear stored energy densities may vary on the same (small) length scale as the typical displacements. This allows for applications to multiwell energies as, e.g. encountered in martensitic phases of shape memory alloys and models for nematic elastomers. Under natural assumptions on the asymptotic behavior of such densities we prove Gamma-convergence of the properly rescaled nonlinear energy functionals to the relaxation of an effective model. The resulting limiting theory is geometrically linearized in the sense that it acts on infinitesimal displacements rather than finite deformations, but will in general still have a limiting stored energy density that depends in a nonlinear way on the infinitesimal strains. Our results, in particular, establish a rigorous link of existing finite and infinitesimal theories for incompressible nematic elastomers.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finite-strain Poynting–Thomson model: Existence and linearization;Mathematics and Mechanics of Solids;2024-08-19

2. Strength analysis of a predeformed plate in contact with a complex shape indenter;Procedia Structural Integrity;2024

3. Nonlinear and Linearized Models in Thermoviscoelasticity;Archive for Rational Mechanics and Analysis;2023-01-05

4. Simulation of a pre-deformed plate compression by two indenters of complex shape;Scientific journal of the Ternopil national technical university;2023

5. Pressure live loads and the variational derivation of linear elasticity;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;2022-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3