DYNAMICAL CLUSTERING AS A GENERATOR OF COMPLEX SYSTEM DYNAMICS

Author:

ZHAO ZHENYUAN1,KIROU ANDY1,RUSZCZYCKI BŁAŻEJ1,JOHNSON NEIL F.1

Affiliation:

1. Physics Department, University of Miami, Coral Gables, FL 33146, USA

Abstract

The challenge to understand the dynamics of Complex Systems is attracting attention from a wide range of disciplines across the natural, biological and social sciences. Recent turmoil in the financial markets has brought this challenge into the public domain, with speculation rife as to the root cause of the observed fluctuations. At their heart, all Complex Systems share the common property of featuring many interacting objects from which the observed macroscopic dynamics emerge. Exactly how this happens cannot yet be specified in a generic way — however, an important milestone in this endeavor is to develop a quantitative understanding of any internal clustering dynamics within the population. Coalescence-fragmentation processes have been studied widely in conventional chemistry and physics — however, collective behavior in social systems is not limited by nearest-neighbor interactions, nor are the details of social coalescence or fragmentation processes necessarily the same as in physical and biological systems. Here we discuss the general phenomenon of coalescence and fragmentation problems with a focus on social systems in which a typical fragmentation process corresponds to an entire group breaking up, as opposed to the typical binary splitting studied in physical and biological systems. Having discussed situations under which power-laws for the group distribution size emerge from such internal clustering dynamics, we move on to look at the specific application to financial markets. We propose a new model for financial market dynamics based on the combination of internal clustering (i.e. herding) dynamics with human decision-making. The resulting fluctuation in price movements is closer to what is observed empirically, leading us to speculate that the combination of dynamical clustering and decision-making are key for developing quantitative models of social dynamical phenomena.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation

Reference30 articles.

1. Scaling theory and exactly solved models in the kinetics of irreversible aggregation

2. R. L. Drake, Topics in Current Aerosol Research, International Reviews in Aerosol Physics and Chemistry, eds. G. M. Hidy and J. R. Brock (Pergamon, 1972) pp. 201–376.

3. Deterministic and Stochastic Models for Coalescence (Aggregation and Coagulation): A Review of the Mean-Field Theory for Probabilists

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3