Error estimates with low-order polynomial dependence for the fully-discrete finite element invariant energy quadratization scheme of the Allen–Cahn equation

Author:

Zhang Guo-Dong1,Yang Xiaofeng2

Affiliation:

1. School of Mathematics and Information Sciences, Yantai University, Yantai 264005, Shandong, P. R. China

2. Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA

Abstract

In this paper, for the Allen–Cahn equation, we obtain the error estimate of the temporal semi-discrete scheme, and the fully-discrete finite element numerical scheme, both of which are based on the invariant energy quadratization (IEQ) time-marching strategy. We establish the relationship between the [Formula: see text]-error bound and the [Formula: see text]-stabilities of the numerical solution. Then, by converting the numerical schemes to a form compatible with the original format of the Allen–Cahn equation, using mathematical induction, the superconvergence property of nonlinear terms, and the spectrum argument, the optimal error estimates that only depends on the low-order polynomial degree of [Formula: see text] instead of [Formula: see text] for both of the semi and fully-discrete schemes are derived. Numerical experiment also validates our theoretical convergence analysis.

Funder

National Science Foundation of China

U.S. National Science Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3