Affiliation:
1. School of Mathematics and Information Sciences, Yantai University, Yantai 264005, Shandong, P. R. China
2. Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA
Abstract
In this paper, for the Allen–Cahn equation, we obtain the error estimate of the temporal semi-discrete scheme, and the fully-discrete finite element numerical scheme, both of which are based on the invariant energy quadratization (IEQ) time-marching strategy. We establish the relationship between the [Formula: see text]-error bound and the [Formula: see text]-stabilities of the numerical solution. Then, by converting the numerical schemes to a form compatible with the original format of the Allen–Cahn equation, using mathematical induction, the superconvergence property of nonlinear terms, and the spectrum argument, the optimal error estimates that only depends on the low-order polynomial degree of [Formula: see text] instead of [Formula: see text] for both of the semi and fully-discrete schemes are derived. Numerical experiment also validates our theoretical convergence analysis.
Funder
National Science Foundation of China
U.S. National Science Foundation
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Modeling and Simulation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献