Affiliation:
1. Department of Mathematics, Fuzhou University, Fuzhou 350002, China
Abstract
In this paper, we consider the mixed initial–boundary value problem for first-order quasilinear hyperbolic systems with general nonlinear boundary conditions in the half space {(t, x) | t ≥ 0, x ≥ 0}. Based on the fundamental local existence results and global-in-time a priori estimates, we prove the global existence of a unique weakly discontinuous solution u = u(t, x) with small and decaying initial data, provided that each characteristic with positive velocity is weakly linearly degenerate. Some applications to quasilinear hyperbolic systems arising in physics and other disciplines, particularly to the system describing the motion of the relativistic closed string in the Minkowski space R1+n, are also given.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献