Affiliation:
1. Dipartimento di Matematica, Politecnico di Milano, Milano 20133, Italy
2. School of Mathematical Sciences, Fudan University, Shanghai 200433, P. R. China
Abstract
We investigate a diffuse-interface model that describes the dynamics of viscous incompressible two-phase flows with surfactant. The resulting system of partial differential equations consists of a sixth-order Cahn–Hilliard equation for the difference of local concentrations of the binary fluid mixture coupled with a fourth-order Cahn–Hilliard equation for the local concentration of the surfactant. The former has a smooth potential, while the latter has a singular potential. Both equations are coupled with a Navier–Stokes system for the (volume averaged) fluid velocity. The evolution system is endowed with suitable initial conditions, a no-slip boundary condition for the velocity field and homogeneous Neumann boundary conditions for the phase functions as well as for the chemical potentials. We first prove the existence of a global weak solution, which turns out to be unique in two dimensions. Stronger regularity assumptions on the initial data allow us to prove the existence of a unique global (respectively, local) strong solution in two (respectively, three) dimensions. In the two-dimensional case, we derive a continuous dependence estimate with respect to the norms controlled by the total energy. Moreover, we establish instantaneous regularization properties of global weak solutions for [Formula: see text]. In particular, we show that the surfactant concentration stays uniformly away from the pure states 0 and 1 after some positive time.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Modeling and Simulation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献