Mathematical modeling, analysis and numerical approximation of second-order elliptic problems with inclusions

Author:

Köppl Tobias1,Vidotto Ettore2,Wohlmuth Barbara2,Zunino Paolo3

Affiliation:

1. Department of Hydromechanics and Modelling of Hydrosystems, University of Stuttgart, Pfaffenwaldring 61, 70569 Stuttgart, Germany

2. Lehrstuhl für Numerische Mathematik, Technical University of Munich, Boltzmannstraße 3, 85748 Garching, Germany

3. MOX, Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Abstract

Many biological and geological systems can be modeled as porous media with small inclusions. Vascularized tissue, roots embedded in soil or fractured rocks are examples of such systems. In these applications, tissue, soil or rocks are considered to be porous media, while blood vessels, roots or fractures form small inclusions. To model flow processes in thin inclusions, one-dimensional (1D) models of Darcy- or Poiseuille type have been used, whereas Darcy-equations of higher dimension have been considered for the flow processes within the porous matrix. A coupling between flow in the porous matrix and the inclusions can be achieved by setting suitable source terms for the corresponding models, where the source term of the higher-dimensional model is concentrated on the center lines of the inclusions. In this paper, we investigate an alternative coupling scheme. Here, the source term lives on the boundary of the inclusions. By doing so, we lift the dimension by one and thus increase the regularity of the solution. We show that this model can be derived from a full-dimensional model and the occurring modeling errors are estimated. Furthermore, we prove the well-posedness of the variational formulation and discuss the convergence behavior of standard finite element methods with respect to this model. Our theoretical results are confirmed by numerical tests. Finally, we demonstrate how the new coupling concept can be used to simulate stationary flow through a capillary network embedded in a biological tissue.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3