Model predictive control with random batch methods for a guiding problem

Author:

Ko Dongnam1,Zuazua Enrique234

Affiliation:

1. Department of Mathematics, The Catholic University of Korea, Jibongro 43, Bucheon, Gyeonggido 14662, Republic of Korea

2. Chair of Dynamics, Control and Numerics, Alexander von Humboldt-Professorship, Department of Data Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany

3. Chair of Computational Mathematics, Fundación Deusto, University of Deusto, 48007 Bilbao, Basque Country, Spain

4. Departamento de Matemáticas, Universidad Autónoma de Madrid, Madrid 28049, Spain

Abstract

We model, simulate and control the guiding problem for a herd of evaders under the action of repulsive drivers. The problem is formulated in an optimal control framework, where the drivers (controls) aim to guide the evaders (states) to a desired region of the Euclidean space. The numerical simulation of such models quickly becomes unfeasible for a large number of interacting agents, as the number of interactions grows [Formula: see text] for [Formula: see text] agents. For reducing the computational cost to [Formula: see text], we use the Random Batch Method (RBM), which provides a computationally feasible approximation of the dynamics. First, the considered time interval is divided into a number of subintervals. In each subinterval, the RBM randomly divides the set of particles into small subsets (batches), considering only the interactions inside each batch. Due to the averaging effect, the RBM approximation converges to the exact dynamics in the [Formula: see text]-expectation norm as the length of subintervals goes to zero. For this approximated dynamics, the corresponding optimal control can be computed efficiently using a classical gradient descent. The resulting control is not optimal for the original system, but for a reduced RBM model. We therefore adopt a Model Predictive Control (MPC) strategy to handle the error in the dynamics. This leads to a semi-feedback control strategy, where the control is applied only for a short time interval to the original system, and then compute the optimal control for the next time interval with the state of the (controlled) original dynamics. Through numerical experiments we show that the combination of RBM and MPC leads to a significant reduction of the computational cost, preserving the capacity of controlling the overall dynamics.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3