Affiliation:
1. Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Diagonal Las Torres 2700 Santiago, 7941169, Chile
2. Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Heidelberg 69120, Germany
Abstract
We continue our study [R. Aylwin, C. Jerez-Hanckes, C. Schwab and J. Zech, Domain uncertainty quantification in computational electromagnetics, SIAM/ASA J. Uncertain. Quant. 8 (2020) 301–341] of the numerical approximation of time-harmonic electromagnetic fields for the Maxwell lossy cavity problem for uncertain geometries. We adopt the same affine-parametric shape parametrization framework, mapping the physical domains to a nominal polygonal domain with piecewise smooth maps. The regularity of the pullback solutions on the nominal domain is characterized in piecewise Sobolev spaces. We prove error convergence rates and optimize the algorithmic steering of parameters for edge-element discretizations in the nominal domain combined with: (a) multilevel Monte Carlo sampling, and (b) multilevel, sparse-grid quadrature for computing the expectation of the solutions with respect to uncertain domain ensembles. In addition, we analyze sparse-grid interpolation to compute surrogates of the domain-to-solution mappings. All calculations are performed on the polyhedral nominal domain, which enables the use of standard simplicial finite element meshes. We provide a rigorous fully discrete error analysis and show, in all cases, that dimension-independent algebraic convergence is achieved. For the multilevel sparse-grid quadrature methods, we prove higher order convergence rates free from the so-called curse of dimensionality. Numerical experiments confirm our theoretical results and verify the superiority of the sparse-grid methods.
Funder
Fondecyt Regular
Conicyt-PFCHA/Doctorado
Swiss National Science Foundation
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Modeling and Simulation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献