Non-isothermal non-Newtonian fluids: The stationary case

Author:

Grasselli Maurizio1,Parolini Nicola2,Poiatti Andrea1,Verani Marco2

Affiliation:

1. Dipartimento di Matematica, Politecnico di Milano, Italy

2. MOX, Dipartimento di Matematica, Politecnico di Milano, Italy

Abstract

The stationary Navier–Stokes equations for a non-Newtonian incompressible fluid are coupled with the stationary heat equation and subject to Dirichlet-type boundary conditions. The viscosity is supposed to depend on the temperature and the stress depends on the strain through a suitable power law depending on [Formula: see text] (shear thinning case). For this problem we establish the existence of a weak solution as well as we prove some regularity results both for the Navier–Stokes and the Stokes cases. Then, the latter case with the Carreau power law is approximated through a FEM scheme and some error estimates are obtained. Such estimates are then validated through some two-dimensional numerical experiments.

Funder

MIUR PRIN

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3