Affiliation:
1. Department of Mathematics, University "Roma Tre", L.go S.L. Murialdo, 1, 00146 Rome, Italy
Abstract
Numerical methods to solve certain nonlinear nonlocal transport equations (hyperbolic partial differential equations with smooth solutions), even singular at the boundary, are developed and analyzed. As a typical case, a model equation used to describe certain crystal precipitation phenomena (a slight variant of the so-called Lifshitz–Slyozov–Wagner model) is considered. Choosing a train of few delta functions as initial crystal size distribution, one can model the technologically important case of having only a modest number of crystal sizes. This leads to the reduction of the transport equation to a system of ordinary differential equations, and suggests a new method of solution for the transport equation, based on Shannon sampling, which is widely used in communication theory.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献