Kinetic and macroscopic models for active particles exploring complex environments with an internal navigation control system

Author:

Gómez Nava Luis1,Goudon Thierry2,Peruani Fernando3

Affiliation:

1. Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany

2. Université Côte d’Azur, Inria, CNRS, LJAD, Parc Valrose, F-06108 Nice, France

3. Laboratory of Theoretical Physics and Modelling, CY Cergy Paris University, 95011 Cergy-Pontoise, France

Abstract

A large number of biological systems — from bacteria to sheep — can be described as ensembles of self-propelled agents (active particles) with a complex internal dynamic that controls the agent’s behavior: resting, moving slow, moving fast, feeding, etc. In this study, we assume that such a complex internal dynamic can be described by a Markov chain, which controls the moving direction, speed, and internal state of the agent. We refer to this Markov chain as the Navigation Control System (NCS). Furthermore, we model that agents sense the environment by considering that the transition rates of the NCS depend on local (scalar) measurements of the environment such as e.g. chemical concentrations, light intensity, or temperature. Here, we investigate under which conditions the (asymptotic) behavior of the agents can be reduced to an effective convection–diffusion equation for the density of the agents, providing effective expressions for the drift and diffusion terms. We apply the developed generic framework to a series of specific examples to show that in order to obtain a drift term three necessary conditions should be fulfilled: (i) the NCS should possess two or more internal states, (ii) the NCS transition rates should depend on the agent’s position, and (iii) transition rates should be asymmetric. In addition, we indicate that the sign of the drift term — i.e. whether agents develop a positive or negative chemotactic response — can be changed by modifying the asymmetry of the NCS or by swapping the speed associated to the internal states. The developed theoretical framework paves the way to model a large variety of biological systems and provides a solid proof that chemotactic responses can be developed, counterintuitively, by agents that cannot measure gradients and lack memory as to store past measurements of the environment.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3