Boundedness and large time behavior of solutions of a higher-dimensional haptotactic system modeling oncolytic virotherapy

Author:

Zheng Jiashan1,Ke Yuanyuan2

Affiliation:

1. School of Mathematics and Information Sciences, Yantai University, Yantai 264005, P. R. China

2. School of Mathematics, Renmin University of China, Beijing 100872, P. R. China

Abstract

This paper is concerned with the higher-dimensional haptotactic system modeling oncolytic virotherapy, which was initially proposed by Alzahrani–Eftimie–Trucu [Multiscale modelling of cancer response to oncolytic viral therapy, Math. Biosci. 310 (2019) 76–95] (see also the survey Bellomo–Outada et al. [Chemotaxis and cross-diffusion models in complex environments: Models and analytic problems toward a multiscale vision, Math. Models Methods Appl. Sci. 32 (2022) 713–792]) to model the process of oncolytic viral therapy. We consider this problem in a bounded domain [Formula: see text] with zero-flux boundary conditions. Although the [Formula: see text]-norm of the extracellular matrix density [Formula: see text] is easily obtainable, the remodeling process still causes difficulty due to the deficiency of regularity for [Formula: see text]. Relying on some [Formula: see text]-estimate techniques, in this paper, under the mild condition on parameters, we finally established the existence of global-in-time classical solution, which is bounded uniformly. Moreover, the large time behavior of solutions to the problem is also investigated. Specially speaking, when [Formula: see text], the corresponding solution of the system decays to [Formula: see text] algebraically. To the best of our knowledge, these are the first results on boundedness and asymptotic behavior of the system in three-dimensional space.

Funder

Shandong Provincial Natural Science Foundation

Beijing Natural Science Foundation

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3