Affiliation:
1. Institute of Applied Mathematics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
Abstract
The role of predator evasion mediated by chemical signaling is studied in a diffusive prey–predator model when prey-taxis is taken into account (model A) or not (model B) with taxis strength coefficients [Formula: see text] and [Formula: see text], respectively. In the kinetic part of the models, it is assumed that the rate of prey consumption includes functional responses of Holling, Beddington–DeAngelis or Crowley–Martin. Existence of global-in-time classical solutions to model A is proved in space dimension [Formula: see text] while to model B for any [Formula: see text]. The Crowley–Martin response combined with bounded rate of signal production precludes blow-up of solution in model A for [Formula: see text]. Local and global stability of a constant coexistence steady state which is stable for the corresponding ordinary differential equation (ODE) and purely diffusive model are studied along with mechanism of Hopf bifurcation for model B when [Formula: see text] exceeds some critical value. In model A, it is shown that prey-taxis may destabilize the coexistence steady state provided [Formula: see text] and [Formula: see text] are big enough. Numerical simulation depicts emergence of complex space-time patterns for both models and indicates existence of solutions to model A which blow-up in finite time for [Formula: see text].
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Modeling and Simulation
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献