Variational multiscale method stabilization parameter calculated from the strain-rate tensor

Author:

Takizawa Kenji1,Otoguro Yuto2,Tezduyar Tayfun E.34

Affiliation:

1. Department of Modern Mechanical Engineering, Waseda University, 3-4-1 Ookubo, Shinjuku-ku, Tokyo 169-8555, Japan

2. Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba-ken 278-8510, Japan

3. Mechanical Engineering, Rice University – MS 321, 6100 Main Street, Houston, TX 77005, USA

4. Faculty of Science and Engineering, Waseda University, 3-4-1 Ookubo, Shinjuku-ku, Tokyo 169-8555, Japan

Abstract

The stabilization parameters of the methods like the Streamline-Upwind/Petrov–Galerkin, Pressure-Stabilizing/Petrov–Galerkin, and the Variational Multiscale method typically involve two local length scales. They are the advection and diffusion length scales, appearing in the expressions for the advective and diffusive limits of the stabilization parameter. The advection length scale has always been in the flow direction. The diffusion length scales in use have mostly been just element-geometry-dependent, but there is good justification for also making that direction-dependent, so that the spatial variation of the solution is taken into account somehow. The length scale in the solution-gradient direction, which was introduced in 2001, was intended for making sure that near solid surfaces, the element length in the surface-normal direction is selected even if that is not the minimum element length. It was also intended for making sure that in a 2D computation with a 3D mesh, there would be no dependence on the element length in the third direction. With the same objectives, and with better invariance properties, we are now introducing the direction-dependent diffusion length scale calculated from the strain-rate tensor. We accomplish those objectives, get invariance with respect to switching to a different inertial reference frame, and the element length in the surface-normal direction, even when the surface is undergoing rotation, is selected as the diffusion length scale.

Funder

International Technology Center Indo-Pacific

Japan Society for the Promotion of Science

ARO

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3