Kolmogorov bounds in the CLT of the LSE for Gaussian Ornstein Uhlenbeck processes

Author:

Balde Maoudo Faramba1,Belfadli Rachid2,Es-Sebaiy Khalifa3ORCID

Affiliation:

1. Cheikh Anta Diop University, Dakar, Senegal

2. Department of Mathematics, Faculty of Sciences and Techniques, Cadi Ayyad University, Marrakech, Morocco

3. Department of Mathematics, Faculty of Science, Kuwait University, Kuwait

Abstract

In this paper, we consider the Ornstein–Uhlenbeck (OU) process defined as solution to the equation [Formula: see text], [Formula: see text], where [Formula: see text] is a Gaussian process with stationary increments, whereas [Formula: see text] is unknown parameter to be estimated. We provide an upper bound in Kolmogorov distance for normal approximation of the least squares estimator [Formula: see text] of the drift parameter [Formula: see text] on the basis of the continuous observation [Formula: see text], as [Formula: see text]. Our approach is based on some novel estimates involving a combination of Malliavin calculus and Stein’s method for normal approximation. We apply our result to fractional OU processes of the first kind, and improved the upper bound of the Kolmogorov distance for the LSE [Formula: see text] provided by [Y. Chen, N. Kuang and Y. Li, Berry–Esseen bound for the parameter estimation of fractional Ornstein–Uhlenbeck processes, Stoch. Dyn. 20(4) (2020) 2050023; Y. Chen and Y. Li, Berry–Esseen bound for the parameter estimation of fractional Ornstein–Uhlenbeck processes with the hurst parameter [Formula: see text], Commun. Stat. Theory Methods 50(13) (2021) 2996–3013], respectively, in the cases [Formula: see text] and [Formula: see text]. We also apply our approach to fractional OU processes of the second kind.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3