L2 Diffusion Approximation for Slow Motion in Averaging

Author:

Kifer Yuri1

Affiliation:

1. Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel

Abstract

Assuming that the fast motion in averaging is sufficiently well mixing we show that the slow motion can be approximated in the L2-sense by a diffusion solving Hasselmann's nonlinear stochastic differential equation and which provides a much better approximation than the one suggested by the averaging principle. Previously, only weak limit theorems in averaging were known which cannot justify, in principle, a nonlinear diffusion approximation of the slow motion.

Publisher

World Scientific Pub Co Pte Lt

Subject

Modelling and Simulation

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Some Strong Limit Theorems in Averaging;Communications in Mathematical Physics;2024-08-23

2. Strong diffusion approximation in averaging and value computation in Dynkin’s games;The Annals of Applied Probability;2024-02-01

3. Higher-order approximations in the averaging principle of multiscale systems;Applied Mathematics Letters;2023-08

4. Averaging principle for stochastic differential equations in the random periodic regime;Stochastic Processes and their Applications;2021-09

5. Averaging Principle and Normal Deviations for Multiscale Stochastic Systems;Communications in Mathematical Physics;2021-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3